

Annexure B

SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Chemical Engineering

BIKANER TECHNICAL UNIVERSITY, BIKANER

Effective from session: 2021-22

Syllabus

B. Tech. Chemical Engineering

2nd Year – III Semester

3CH2-01: Advanced Mathematics

	Credit:3	Max Marks:150(IA:30,ETE:120)		
	3L+0T+ 0P End Term Exams: 3 hr			
Unit No.	Conte	nts	Hours	
1.	Complex Variables: Analytic functions, Cauchy-Riemann equations, Elementary conformal mapping with simple applications, Line integral in complex domain, Cauchy's theorem, Cauchy's integral formula, Taylor's series, Laurent's series, Poles, Residues, evaluation of simple definite real integrals using the theorem of residues. Simple contour integration			
2.	2. Introduction to Statistics: Probability distribution: Bimodal, Poisson, Uniform, Normal, Correlation and Regression, Linear regression, Confidence limits, types of errors, testing of hypothesis based on normal, Chi-square test, F-test, Z-test, Student's T-test. Comparison of means and variances.			
3.	3. Finite differences- Forward, Backward, and Central differences, Newton's forward and backward difference interpolation formulae, Stirling's formula.Numerical differentiation, Numerical Integration – Trapezoidal rule, Simpson's one-third and three-eighth rule. Introduction to numerical solution of ordinary differential equation			
		Total Hrs	40	

3CH1-02/3CH1-03 : TECHNICAL COMMUNICATION

Credit:2		Max Marks:100 (IA:20, ETE:8	30)		
	2L+0T+ 0P	EndTermExams:2hr			
Unit No.	Contents				
1.	Introduction to Technical Comm communication, Aspects of technical communication, importance of technical of skills (Listening, speaking, writing, read technical communication.	unication- Definition of technical communication, forms of technical communication, technical communication ing writing), linguistic ability, style in	4		
2.	2. Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media				
3.	Technical Writing, Grammar and Editi technical discourse, Writing, drafts and rev in writing and speaking, Study of advance appropriate technical style, Introduction Planning, drafting and writing Official Application, Minutes of Meetings.	ing- Technical writing process, forms of vising, Basics of grammar, common error ed grammar, Editing strategies to achieve to advanced technical communication. Notes, Letters, E-mail, Resume, Job	8		
4.	 Advanced Technical Writing- Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles. 				
		Total Hrs	2 6		

3CH1-02/3CH1-03 : MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTING

Credit:2		Max Marks:100 (IA:20, ETE:80)			
	2L+0T+ 0P	End Term Exams: 2hr			
Unit No.	Contents				
1.	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.				
2.	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.				
3.	Production and Cost analysis- Theory of production- production function returns to scale, production optimization, le Cost concepts-explicit and implicit cost, f sunk costs, cost function, cost curves, cost a	on, law of variable proportions, laws of east cost combination of inputs, isoquants. Fixed and variable cost, opportunity cost, and output decisions, cost estimation.	5		
4.	Market structure and pricing theory- Perfect competition, Monopoly, Monopolis	tic competition, Oligopoly.	4		
5.	 5. Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques. 				
		Total Hrs	26		

3CH4-04: Chemical Engineering Thermodynamics-1

Credit:3		Max Marks:150 (IA:30, ETI	E:120)		
	3L+0T+ 0P	End Term Exams: 3hr	•		
Unit No.	Content	nts Contact Hours			
1	1 Introduction: Definitions and Concepts: System, Surroundings, Property, Energy, · Work, Thermodynamic equilibrium, stability of equilibrium states. Zeroth Law of Thermodynamics: Perfect gas scale. First Law of Thermodynamics: First law of Thermodynamics and Its Applications, First law analysis of processes, Control mass and control volume analysis, Steady state and Transient state flow processes				
2	2 Volumetric Properties of Pure Fluids: PVT behavior of pure substances, virial equation and its applications, cubic equations of state, generalized correlations for gases and liquids.				
3.	 3 Heat Effects: Sensible heat effects, heat effects accompanying phase changes of pure substances, standard heats of reaction, formation and combustion, effect of temperature on the standard heat of reaction 				
4	4 Second law of Thermodynamics: Limitation of First Law, Kelvin-Planck and Clausius Statements, Reversible and Irreversible Processes, Carnot cycle, Entropy, Second Law analysis of a control volume. Exergy.				
5.	5 Thermodynamic Properties of Fluids: Fundamental property relations, Maxwell's 8 • equations, Residual properties, Clapeyron's Equation, Generalized correlations for thermodynamic properties of gases. 8				

3CH4-05: Fluid Mechanics

	Credit:3	Max Marks:150(IA:30,ETE:12	0)			
	3L+0T+ 0P	End Term Exams: 3 hr				
Unit No.	Contents					
1	1 Properties of fluids; Classification; Ideal fluid, Newtonian and Non-Newtonian fluids; Newton's law of viscosity. Pascal's and Hydrostatic law, manometers. Types of manometer					
2	Fluid Statics: fluid pressure and its measuren	ient.	3			
3	Fluid Kinetics: Continuity equation; types of flow.					
4	4 Fluid dynamics: One dimensional equation of motion; Bernoulli's equation; application; application of Bernoulli's equation. Friction losses in pipe flow, valves and fittings, k-values, sudden expansion and contraction, pipe flow problems Nozzle. Introduction to laminar & turbulent flow. Velocity Distribution for turbulent flow,					
5	 Flow through Pipes – Darcy – Weisbach's equation. Head loss in pipes. Pipes in series/ Parallel. Classification, basic construction and application of different types of pumps. 					
6	6 Pump: Centrifugal pump, Principles and application in Bernoulli's theorem Types of Pump: Axial pumps, Gear pump, Plunger Pumps Vane pump, Reciprocation pump and Screw pump. Characteristic Curves of Pumps. Valves, types of valves.					
7	7 Flow Metering: Metering of fluids; orifice meter, Venturimeter, Pitot tube, Rota meter, Notches, Gas flow meters, coefficient of discharge.					
		Total Hrs	36			

3CH4-06: Chemical Process Calculation

Credit:3		Max Marks:150 (IA:30, ETE:12	20)		
	3L+0T+ 0P	End Term Exams: 3hr			
Unit No.	Contents				
1	Introduction to chemical Engineering calculations: Units and dimensions, mole unit, 6 conventions in methods and analysis and measurements, basis, temperature, pressure, the chemical equations and stoichiometry.				
2	Material Balances: Material balance of physical and chemical processes with and without chemical reactions, including recycle, purge and bypass.				
3	Gases, Vapors, Liquids, and Solids: Ideal gas law calculations, real gas relationships, vapour pressure and liquids, saturation, partial saturation and humidity, introduction to vapor liquid equilibria for multi-component systems, material balance involving condensation and vaporization				
4	Energy Balances: Concept and unit, calculation of enthalpy changes, general balance with and without chemical reactions, heat of solution and mixing				
5	Unsteady state material and energy balance		4		
6	Solids, liquids and gaseous fuels, some industrial examples of the above, simple estimation of physical properties (Transport, Thermodynamic) of fluids and mixtures				
		Total Hrs	40		

3CH4-07: Mechanical Operation

	Credit:3	Max Marks:150 (IA:30, F	CTE:120)		
	3L+0T+ 0P	End Term Exams: 3	3hr		
Unit No.	Conten	ts	Hours		
1.	Particles Size Analysis: Sieve analysis, si equivalence, size estimation in sub-sieve ran	ze distribution, size averaging and ge, effectiveness of screen.	4		
2.	Size Reduction: Theory of crushing and grin crushing and grinding equipment and their s	iding, laws of crushing and grinding, election.	4		
3.	Storage of Solids: Angle of slide and repose Jansen's equation.	4			
4.	Particle Mechanics: Motion of particle in flu law, hindered settling, jigging and classifica	4			
5.	Sedimentation and Flotation: Gravity and sedimentation tank and continuous th flotation agents and flotation equipment.	6			
6.	. Flow Through Packed Beds: Characteristics of packings, flow of a single fluid through a packed bed, problem of channeling and wetting, counter current gas- liquid flow through packed beds, loading and flooding characteristics, industrial applications				
7.	 Fluidization: Fluidization characteristics, aggregative and particulate fluidization, voidage and minimum fluidization velocity, voidage correlation, liquid-solid and gas-solid fluidization characteristics, industrial applications of fluidization. 				
8.	8. Filtration: Flow through filter cake and medium, washing and drying of cake, filter aids, selection of filtration equipment, constant rate and constant pressure filtration				
9.	Conveying of Solids: Pneumatic and hydrocharacteristics and flow relations, mechanica	draulic conveying of solids, general al conveyers.	4		
		Total Hrs	40		

3CH4-21: Fluid Mechanics Lab

	Credit:2	Max Marks:100 (IA:60, ETE:40)		
	0L+0T+ 4P	End Term Exams: 2hr		
S. No.	Title of experime	nt	Hours	
1.	Reynolds experiment for Laminar, transitional and turbulent flow identification, through Reynolds apparatus			
2.	Verification of Bernoulli's Equation through Bernoulli's Theorem Apparatus.			
3.	Determination of co efficient of Discharge for Orifice, Venturimeter through Venturimeter and orifice meter test rig.			
4.	Estimation of losses through pipe fitting, s frictional Pressure drop in Circular pipes.	udden enlargement and contraction	4	
5.	Verification of Darcy's Law through Darcy a	apparatus.	4	
6.	To Study Construction, Working of Cen Plunger Pumps through test rig	ntrifugal, Reciprocating, Gear and	4	
7.	7. To Study pitot tube apparatus and cavitation apparatus in a pipe flow.			
		Total	28	

BIKANER TECHNICAL UNIVERSITY, BIKANER Ckhdkusj rduhdh fo'ofo|ky;] chdkusj OFFICE OF THE DEAN ACADEMICS

3CH4-22: Mechanical Operation Lab

Credit:2		Max Marks:100 (IA:60,ETE:40)			
	0L+0T+ 4P	EndTermExams:2hr			
Experiment No.	Objective	es	Hours		
1.	To study the principle of a hydro-cyclone an	nd find out the efficiency of separation.	4		
2.	To determine the average particle size of a r	nixture of particles by sieve analysis.	4		
3.	To determine and experimentally verify Ritinger"s constant of Jaw crusher.				
4.	To determine reduction ratio, maximum feed size and theoretical capacity of crushing rolls.				
5.	To determine the effect of no. of balls on gr critical speed with the operating speed.	4			
6.	5. To find out enrichment of the coal sample using a froth flotation cell.				
7.	To determine and experimentally verify red	uction ratio using Pulverizer.	4		
8.	8. To determine and experimentally verify the efficiency of separation of a cyclone separator.				
		Total Hrs	32		

3CH4-23: DBMS (Data Base Management System) Lab

	Credit:2	Max Marks:100 (IA:60,ETE:40)
	0L+0T+ 4P	EndTermExams: 2hr
Experiment		Objectives
No.		
1.	Objectives: At the end of the semest implemented the following: 1. Stating a database design & application 2. Preparing ER diagram 3. Finding the data fields to be used in the 4. Selecting fields for keys. 5. Normalizing the database including ana 6. Installing and configuring the database 7. Designing database and writing applica data base including concepts like conce generation etc. 8. Get acquainted with SQL. In order to achieve the above objectives, The implementation shall being with the diagram, designing of database, normaliz generation of reports, views etc. The prob be used by a single user. All the above st application to be used by multiple users application shall NOT use web technique	er, the students should have clearly understood and problem. database. lysis of functional dependencies. server and the front end tools. tions for manipulation of data for a standalone and shared currency control, transaction roll back, logging, report it is expected that each students will chose one problem. statement of the objectives to be achieved, preparing ER tation and finally manipulation of the database including ohem may first be implemented for a standalone system to the server environment with access control. The tes. One exercise may be assigned on creation of table.
	manipulation of data and report generation	n using SQL.
2.	Suggested Tools: For standalone environment, Visual FoxF manipulation language may be used. For multi-user application, MYSql is sugg front end, VB.Net, Java, VB Script or any chosen.	Pro or any similar database having both the database and sested. However, any other database may also be used. For y other convenient but currently used by industry may be
	 Indicative List of exercises: Student information system for your color Student grievance registration and redree A video library management system for Inventory management system for a har Inventory management system for your Guarantee management system for the example. 	llege. essal system. a shop. dware/ sanitary item shop. college. equipments in your college.

Syllabus

B. Tech. Chemical Engineering 2nd Year - IV Semester

			THEO	DRY							
CN			Course	0	Conta	ct	Marke	2			Cr
SN	Categ	Colo	T:41-	hr	hrs/week		week				
	ory	Code	litte	T	т	Р	Fym	ТА	FTF	Total	
					-	•	Hrs			Total	
1	BSC	4CH2-01	Numerical Methods in Chemical Engineering	3	0	0	3	30	120	150	3
2			Managerial Economics &								
	HSMC	4CH1-03/	Financial Accounting	2	0	0	2	20	80	100	2
		4CH1-02	/Technical		-	-					
			Communications								
3	ESC	4CH3-04	Material Science and Technology	3	0	0	3	30	120	150	3
4		4CH4-05	Heat Transfer	3	0	0	3	30	120	150	3
5	PCC	4CH4-06	Mass Transfer-I	3	0	0	3	30	120	150	3
6		4CH4-07	Thermodynamics-II	3	0	0	3	30	120	150	3
			Sub Total	17	0	0		170	680	850	17
			DDACTICAL 8	SEC							
7		4CH4-21	Heat Transfer Lab	0		AL 4		60	40	100	2
8	-	4CH4-22	Mass Transfer Lab-I	0	0	4		60	40	100	2
9	PCC	PCC The	Thermodynamics Lab	0	-			00	-10	100	
		4CH4-23	Thermodynamics Lab	0	0	4		60	40	100	2
10	SODE	4000.00	Social Outreach	0	0	0		0	0	25	0.5
	CA	4CK8-00	Discipline &Extra Curricular Activities	0	0	0		U	0	25	0.5
			Sub- Total	0	0	12		180	120	325	6.5
		ТО	TAL OF IV SEMEESTER	17	0	12		350	800	1175	23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

4CH2-01: Numerical Methods in Chemical Engineering

	Credit:3	Max Marks: 150(IA:30,ETE:12	20)		
	3L+0T+ 0P	End Term Exams: 3hr			
S.No.	o. Contents				
1	Introduction: Objective, scope and outcome	of the course.	1		
2	2 Linear Algebraic Equations: Introduction, Approximation and Concept of Error & Error Analysis Methods like Gauss elimination, LU decomposition and matrix inversion, Gauss-Siedel method, Chemical engineering problems involving solution of linearalgebraic equations				
3	3 Root finding methods for solution on non-linear algebraic equations: Bisection, Newton-Raphson and Secant methods, Chemical engineering problems involving solution of non- linearequations Interpolation and Approximation, Newton's polynomials and Lagrange polynomials, splineinterpolation, linear regression, polynomial regression, least square regression				
4	Numerical integration: Trapezoidal rule, Simpson's rule, integration with unequal segments, quadrature methods, Chemical engineering problems involving numerical differentiation and integration				
5	5 Ordinary Differential Equations: Euler method, Runge-Kutta method, Adaptive Runge-Kutta method, Initial and boundary value problems, Chemical engineering problems involving single, and a system of ODEs				
6	Introduction to Partial Differential Equation equation, Heat conduction/diffusion e Nicholson method.	s: Characterization of PDEs,Laplace quations, explicit, implicit, Crank-	8		
		Total	40		

4CH1-03/4CH1-03: Managerial Economics And Financial Accounting

	Credit:3	Max Marks:150 (IA:30, ETE:1	20)
	3L+0T+ 0P	End Term Exams: 3hr	
S.No	S.No Contents		Hours
· · · 1	Introduction: Objective, scope and outcome of	f the course.	1
2	2 Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.		4
3	3 Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply- determinants of supply, supply function, elasticity of supply.		8
4	 Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation. 		8
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic co	mpetition, Oligopoly.	5
6	6 Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.		10
		TOTAL	36

4CH1-02/4CH1-02: Technical Communication

	Credit:2	Max Marks:100 (IA:20, ETE:8	30)
	2L+0T+ 0P	End Term Exams: 2hr	
S. No.	Content	s	Hours
1	Introduction: Objective, scope and outcome	e of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.		3
3	3 Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.		6
4	Technical Writing, Grammar and Editing technical discourse, Writing, drafts and reversor in writing and speaking, Study of advarachieve appropriate technical style, Incommunication. Planning, drafting and wrikesume, Job Application, Minutes of Meeting	- Technical writing process, forms of vising, Basics of grammar, common anced grammar, Editing strategies to troduction to advanced technical ting Official Notes, Letters, E-mail, s.	8
5	Advanced Technical Writing- Technical Characteristics and formats and structure of Proposals, types of technical proposals, Cha of technical proposals. Technical Articles, strategies, structure and formats of technical	Reports, types of technical reports, technical reports. Technical Project racteristics and formats and structure types of technical articles, Writing articles.	8
		Total	26

4CH3-04: Material Science and Technology

3L+0T+ 0P End Term Exams: 3hr S.No. Contents Hours 1 Introduction: Objective, scope and outcome of the course. 1 2 Introduction to materials: Atomic structure, bonding aggregates of atom. Crystals Structure: crystal structure, periodicity in crystal, types of structures: SC, BCC, FCC and HCP Crystals system, crystal lattice, unit cell, crystal direction, crystal planes, Miller indices, inter planar spacing, X-ray analysis, Crystals Defects: classifications and impact on the properties of engineering materials. 7 3 Phase Equilibria – phase rule phase changes in pure Iron, binary systems, solid solution, Eutectic, Eutectoid, Peritectic and Peritectoid reactions. General principles of heat treatment: Annealing, normalizing, hardening, tempering and age hardening 8 4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials, Domain theory, Hard and soft magnetic materials. Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 10 6 Characterization of Material: Principle, Construction an		Credit:3	Max Marks:150 (IA:30, ETE:120)	
S.No. Contents Hours 1 Introduction: Objective, scope and outcome of the course. 1 2 Introduction to materials: Atomic structure, bonding aggregates of atom. Crystals Structure: crystal structure, periodicity in crystal, types of structures: SC, BCC, FCC and HCP Crystals system, crystal lattice, unit cell, crystal direction, crystal planes, Miller indices, inter planar spacing, X-ray analysis, Crystals Defects: classifications and impact on the properties of engineering materials. 7 3 Phase Equilibria – phase rule phase changes in pure Iron, binary systems, solid solution, Eutectic, Eutectoid, Peritectic and Peritectoid reactions. General principles of heat treatment: Annealing, normalizing, hardening, tempering and age hardening 8 4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials, Domain theory, Hard and soft magnetic materials. 10 6 Characterization of Material: Principle, Construction and Procedure for characterization of material: Smart materials. 8 6 Characterization of material: Principle, Construction and Procedure for characterization of material: Principle, Construction and Procedure for characterization of material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy, Fluorescen		3L+0T+ 0P	End Term Exams: 3hr	
1 Introduction: Objective, scope and outcome of the course. 1 2 Introduction to materials: Atomic structure, bonding aggregates of atom. Crystals Structure: crystal structure, periodicity in crystal, types of structures: SC, BCC, FCC and HCP Crystals system, crystal lattice, unit cell, crystal direction, crystal planes, Miller indices, inter planar spacing, X-ray analysis, Crystals Defects: classifications and impact on the properties of engineering materials. 7 3 Phase Equilibria – phase rule phase changes in pure Iron, binary systems, solid solution, Eutectic, Eutectoid, Peritectic and Peritectoid reactions. General principles of heat treatment: Annealing, normalizing, hardening, tempering and age hardening 8 4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials. Optical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials. Domain theory, Hard and soft magnetic materials. Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 8 6 Characterization of Material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy	S.No.	Co	ntents	Hours
2 Introduction to materials: Atomic structure, bonding aggregates of atom. Crystals Structure: crystal structure, periodicity in crystal, types of structures: SC, BCC, FCC and HCP Crystals system, crystal lattice, unit cell, crystal direction, crystal planes, Miller indices, inter planar spacing, X-ray analysis, Crystals Defects: classifications and impact on the properties of engineering materials. 7 3 Phase Equilibria – phase rule phase changes in pure Iron, binary systems, solid solution, Eutectic, Eutectoid, Peritectic and Peritectoid reactions. General principles of heat treatment: Annealing, normalizing, hardening, tempering and age hardening 8 4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials. Optical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials, Domain theory, Hard and soft magnetic materials. Thermal Properties: Thermal expansion, Heat capacity, Thermal Conduction, Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 8 6 Characterization of Material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), EDS/E	1	Introduction: Objective, scope and outc	come of the course.	1
3 Phase Equilibria – phase rule phase changes in pure Iron, binary systems, solid solution, Eutectic, Eutectoid, Peritectic and Peritectoid reactions. General principles of heat treatment: Annealing, normalizing, hardening, tempering and age hardening 8 4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials. Optical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials, Domain theory, Hard and soft magnetic materials. Thermal Properties: Thermal expansion, Heat capacity, Thermal Conduction, Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 8 6 Characterization of Material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), EDS/EDX, Atomic force microscopy (AFM), Dielectric spectroscopy, Fluorescence spectroscopy. 8	2	Introduction to materials: Atomic structure, bonding aggregates of atom. Crystals Structure: crystal structure, periodicity in crystal, types of structures: SC, BCC, FCC and HCP Crystals system, crystal lattice, unit cell, crystal direction, crystal planes, Miller indices, inter planar spacing, X-ray analysis, Crystals Defects: classifications and impact on the properties of engineering materials.		7
4 Corrosion: Types of Corrosion in Industries, corrosion of materials in construction, pipe line and in equipments and its control 6 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials. Optical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials, Domain theory, Hard and soft magnetic materials. Thermal Properties: Thermal expansion, Heat capacity, Thermal Conduction, Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 10 6 Characterization of Material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), EDS/EDX, Atomic force microscopy (AFM), Dielectric spectroscopy, Fluorescence spectroscopy. 8	3	Phase Equilibria – phase rule phase c solution, Eutectic, Eutectoid, Peritectic an heat treatment: Annealing, normalizing, h	hanges in pure Iron, binary systems, solid d Peritectoid reactions. General principles of ardening, tempering and age hardening	8
 5 Materials and their properties: Mechanical properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Hardenability, Creep fatigue and Rheology. Electrical properties: Conductors, Semiconductors and insulators, dielectric materials. Optical properties: Absorption, Reflection, Transmission and Refraction, optical fibers and lasers. Magnetic properties: various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ant ferromagnetic and Ferromagnetic materials, Domain theory, Hard and soft magnetic materials. Thermal Properties: Thermal expansion, Heat capacity, Thermal Conduction, Thermal Stresses. Criteria for selection of materials for special applications in Industries such as smart materials. Smart materials. 6 Characterization of Material: Principle, Construction and Procedure for characterization of material using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), EDS/EDX, Atomic force microscopy (AFM), Dielectric spectroscopy, Fluorescence spectroscopy. 8 	4	Corrosion: Types of Corrosion in Indus pipe line and in equipments and its contr	tries, corrosion of materials in construction, ol	6
(AFM), Dielectric spectroscopy, Fluorescence spectroscopy. Total 40	6	Materials and their properties: Me Toughness, Stiffness, Ductility, Malle Rheology. Electrical properties: Con dielectric materials. Optical properties: Refraction, optical fibers and lasers. magnetic materials, Diamagnetic, Param and Ferromagnetic materials, Domain to Thermal Properties: Thermal expans Thermal Stresses. Criteria for selection Industries such as smart materials. Smar Characterization of Material: Princ characterization of material using to Transmission Electron Microscopy (TE	chanical properties: Hardness, Strength, ability, Hardenability, Creep fatigue and nductors, Semiconductors and insulators, e Absorption, Reflection, Transmission and Magnetic properties: various types of agnetic, Ferromagnetic, Ant ferromagnetic theory, Hard and soft magnetic materials. ion, Heat capacity, Thermal Conduction, n of materials for special applications in t materials. ciple, Construction and Procedure for Scanning Electron Microscopy (SEM), M), EDS/EDX, Atomic force microscopy	10
		(AFM), Dielectric spectroscopy, Fluores	cence spectroscopy. Total	40

4CH4-05: Heat Transfer-1

	Credit:3	Max Marks:150 (IA:30, ETE:120)	l i
	3L+0T+ 0P	End Term Exams: 3hr	
Unit No.	Unit Contents		Hours
1.	 Introduction: Modes of heat transfer: conduction, convection, radiation. Steady-State Conduction in One Dimension: Fourier's Law, thermal conductivity, steady- state conduction of heat through a composite solid, cylinder and sphere. Steady-state heat conduction in bodies with heat sources: plane wall, cylinder and sphere. Unsteady-State Heat Conduction: Mathematical formulations and initial and boundary conditions. Analytical solution, numerical solution. 		8
2.	Heat Transfer Coefficient: Convective heat coefficient, overall heat transfer coefficient, h contact resistance, critical insulation thickness, or Forced Convection: Flow over a flat plate, the Dimensional analysis: Buckingham Pi theor Correlations for the heat transfer coefficient: La flow through a circular pipe, flow through a non a cylinder, flow past a sphere, flow across a bank and fluidized bed.Double-pipe heat exchanger in	transfer and the concept of heat transfer eat transfer from extended surfaces, thermal ptimum insulation thickness. ermal boundary layer, flow across a cylinder. em, Dimensional groups in heat transfer. aminar flow through a circular pipe, turbulent -circular duct, flow over flat plate, flow across a of tubes, heat transfer coefficient in a packed parallel and counter-current flow.	8
3.	Free Convection: Introduction, heat transfer of cylinder, sphere, enclosure. Combined free and for Boiling and Condensation: Boiling phenome boiling heat transfer: Nucleate boiling, critical her boiling, condensation phenomena, film condensation, condensation outside a horizontal horizontal tube, effect of non-condensable gases.	correlations for free convection: flat surface, breed convection. non, nucleate boiling, Correlations for pool eat flux, stable film boiling. Forced convection instion on a vertical surface, turbulent film I tube and tube bank. Condensation inside a Dropwise condensation.	6
4.	Radiation Heat Transfer: Basic concepts of ra Planck's Law, Wien's Displacement Law, Stefar Radiation intensity of a black body, spectra hemisphere. Radiation heat exchange between s between black bodies and between diffuse gray s	adiation from a surface: black body radiation, n-Boltzmann Law, Kirchoff's Law, Gray body. l emissive power of a black body over a urfaces – the view factor. Radiation exchange urfaces.	6
5.	Evaporators: Types of evaporators: Natural evaporators, falling film evaporators, climbing-fi and plate evaporators. Principles of evaporation evaporators, Capacity and economy, Boiling pois solution. Calculations of a single effect evaporator	-circulation evaporators, forcedcirculation lm evaporators, agitated thin-film evaporators and evaporators; Single and multiple effect nt rise, heat transfer coefficient enthalpy of a or.	6

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website:<u>https://btu.ac.in</u>

BIKANER TECHNICAL UNIVERSITY, BIKANER Ckhdkusj rduhdh fo'ofo|ky;] chdkusj OFFICE OF THE DEAN ACADEMICS

6.	Heat Exchangers: Construction of a shell-and-tube heat exchanger, fouling of a heat	6
	exchanger, LMTD, temperature distribution in multi-pass heat exchangers, individual heat	
	transfer coefficients. Types of shell-and-tube heat exchanger. Design of different type of	
	heat exchangers.	
	Total Hrs	40

4CH4-06: Mass Transfer-I

	Credit:3	Max Marks:150(IA:30,ETE:120)	
	3L+0T+ 0P	EndTermExams:3hr	
S.No.	Con	tents	Hours
1	Introduction: Objective, scope and outco	ome of the course.	1
2	Fundamentals of Mass Transfer: Individual and film coefficients, overall mass transfer Coefficient and their inter relationships; Analogies in transfer processes, determination of mass transfer coefficient.		7
3	3 Diffusion Phenomenon : Molecular and eddy diffusion in gases, liquids and solids, Interface mass transfer. Mass transfer theories: film theory Penetration theory and surface renewal theory.		6
4	Humidification and Dehumidification : Humidification: General Theory, psychometric chart. Fundamental concepts in humidification & dehumidification, wet bulb temperature. Adiabatic saturation temperature, measurement of humidification calculation of humidification operation, cooling towers and related equipments		6
5	Drying: Equilibrium mechanism theory of continuous drying for tray driers, Drum d	of drying, drying rate curve. Batch and ryers, spray and tunnel dryers.	10
6 Absorption: Introduction to Adsorption, Absorption and Extraction in continuous contact columns; co-current, counter current and cross current contacting Absorption, calculations of NTU and HTU, Concept of HETP, Two phase flow in packed beds, co-current and counter current Processes Flooding loading, column internals: types of trays/plates and packing, point and plate efficiency.		10	
	•	Total	40

4CH4-07: Thermodynamics – II (Common with Petroleum Engineering & Petrochemical Engineering)

	Credit: 3	Max Marks: 150 (IA:30,ETE:1	.20)
	3L+0T+ 0P	End Term Exams: 3 hr	
S.No.	Contents		Hours
1	Introduction: Objective, scope and outcome of	the course.	1
2	Review of first and second law of thermodynamic	s.	7
3	3 Vapor-liquid equilibrium: phase rule, simple models for VLE;VLE by modified Raoult'slaw; 1VLE from K-value correlations; Flash calculations.		10
4	4 Solution Thermodynamics: fundamental property relationships, free energy and chemical potential, partial properties, definition of fugacity and fugacity coefficient of pure species and species in solution, the ideal solution and excess properties. Liquid phase properties from VLE, Models for excess Gibbs energy, heat effects and property change on mixing. UNIFAC and UNIQUAC models. Liquid-Liquid Equilibria; Vapor-Liquid-Liquid Equilibria; Solid-Liquid Equilibria; Solid-GasEquilibria.		12
5	Chemical reaction equilibria: equilibrium evaluation of equilibrium constant at different t of single reactions, multi-reaction equilibria thermodynamics.	n criterion, equilibrium constant, emperatures, equilibrium conversion Introduction to molecular/statistical	10
		Total	40

4CH4-21: Heat Transfer Lab-1

Credit:2		Max Marks:100(IA:60,F	ETE:40)
	0L+0T+ 4P	End Term Exams: 2	2hr
Experiment	Objective		Contact Hours
No.			
1.	Study of Heat transfer by conduction in a m	netal bar	2
2.	Study of Heat transfer by conduction in a Composite metal wall.		2
3.	Study of unsteady state heat transfer.		2
4.	Determination of Thermal conductivity of Insulated Powder.		2
5.	Study of Heat transfer by Natural convection.		2
6.	Study of Heat transfer by Forced convection.		2
7.	Study of Heat transfer in Agitated Vessel.		2
8.	Determination of Emissivity of given material.		2
Total Hrs			16

BIKANER TECHNICAL UNIVERSITY, BIKANER Ckhdkusj rduhdh fo'ofo|ky;] chdkusj OFFICE OF THE DEAN ACADEMICS

4CH4-22: Mass Transfer – Lab I

	Credit:2	Max Marks:100(IA:60,ET	E:40)
	0L+0T+ 4P	EndTermExams:2hr	
Experiment	Objective		Contact Hours
1.	To determine diffusion coefficient of solid vapour in air		2
2.	To determine diffusion coefficient of Liquid vapour in air		2
3.	To study the rate dissolution of a rotating cylinder and then to calculate the mass transfer coefficient. (Mass Transfer with and without chemical Reaction)		2
4.	To investigate the mass transfer characteristic of a wetted surface column unit.		2
5.	To investigate the characteristics of cooling tower.		2
6.	To study the drying characteristics of a wet granular material using natural and forced circulation in tray dryer.		2
7.	To prepare the drying rate curve for force draft tray dryer.		2
8.	To study the characteristics of spray dryer.		2
		Total Hours	16

BIKANER TECHNICAL UNIVERSITY, BIKANER Ckhdkusj rduhdh fo'ofo|ky;] chdkusj OFFICE OF THE DEAN ACADEMICS

4CH4-23: Thermodynamics Lab

	Credit:2	Max Marks:75 (IA:45,ETE:30)	
	0L+0T+ 4P	EndTermExams:2hr	
Experiment No.	Objectives		Hrs
1.	Determination of specific heat.		2
2.	Determination of thermocouple voltage	».	2
3.	Determination of Coefficient of Linear Expansion of Metals		2
4.	To study low pressure boilers and their	accessories and mountings.	2
5.	To study high pressure boilers and their	r accessories and mountings.	2
6.	To study the working of impulse and re	eaction steam turbines.	2
7.	To prepare heat balance sheet for given	boiler.	2
8.	To find power output & efficiency of a steam turbine.		2
		Total Hrs	16